Abstract
The Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique encouraged from the intrinsic manner of bee swarm seeking for their food source. With flexibility for numerical experimentation, the PSO algorithm has been mostly used to resolve diverse kind of optimization problems. The PSO algorithm is frequently captured in local optima meanwhile handling the complex real-world problems. Many authors improved the standard PSO algorithm with different mutation strategies but an exhausted comprehensive overview about mutation strategies is still lacking. This article aims to furnish a concise and comprehensive study of problems and challenges that prevent the performance of the PSO algorithm. It has tried to provide guidelines for the researchers who are active in the area of the PSO algorithm and its mutation strategies. The objective of this study is divided into two sections: primarily to display the improvement of the PSO algorithm with mutation strategies that may enhance the performance of the standard PSO algorithm to great extent and secondly, to motivate researchers and developers to use the PSO algorithm to solve the complex real-world problems. This study presents a comprehensive survey of the various PSO algorithms based on mutation strategies. It is anticipated that this survey would be helpful to study the PSO algorithm in detail for researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.