Abstract
β-propeller phytase-like sequences (BPP-like sequences) are widespread in the microbial world and have been found in the sequenced genomes of aquatic, soil, and plant bacteria. Exploring NCBI microbial genome database for putative genes encoding phytase, a BPP-like sequence from Sphingomonas wittichii RW-1 (Sequence ID: CP000699.1), known for its capacity of degrading polychlorinated dibenzo-p-dioxins and dibenzofurans, was recognized. The putative phytase gene (phySw) was amplified with specific primers, cloned, and overexpressed in Escherichia coli and the catalytic properties of the recombinant PhySw protein were analyzed. The results show that phySw encodes an enzyme with the properties of β-propeller phytases: it requires the presence of Ca2+ ions, it is optimally active at 55°C, and it has a pH optimum of 6.0 with good activity in the range 6.0-8.0. Furthermore, the enzyme exhibits a good thermostability, recovering 68% of its original activity after treatment at 80°C for 10min, and shows a good substrate specificity for phytic acid. These properties render this enzyme a candidate as an animal feed additive (e.g., for aquaculture industry). The isolation of phytases from a hydrocarbon-utilizing microorganism also opens new scenarios for their possible application in combating oil pollution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have