Abstract
In Machchhar and Elber (2016), an algorithm is presented for computing all real roots of univariate scalar Bernstein polynomials by subdividing the polynomial at a known root and then factoring out the root from the polynomial, resulting in a reduction in problem complexity. This short report presents a speed-up over Machchhar and Elber (2016), by circumventing the need for subdividing the polynomial each time a root is discovered, an O(n2) process, where n is the order of the polynomial. The subdivision step is substituted for by a polynomial division. This alternative also has some drawbacks which are discussed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.