Abstract

This paper studies the nonlinear systems obtained by considering a wave equation in closed loop with a nonlinear dynamical boundary controller. The controller is subject to a magnitude limitation and modeled by a linear ordinary differential equation with a saturation map in the input. The well-posedness of the obtained infinite-dimensional system is first studied and then two stability results are given. These two stability results apply for two cascade cases and give sufficient conditions for the asymptotic stability of the equilibrium. The well-posedness is proven by using nonlinear semigroups techniques, whereas the global asymptotic stability results are obtained by Lyapunov-based arguments in infinite-dimensional state space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.