Abstract
We study the superoptimal Frobenius operators in several matrix vector spaces and in particular in the circulant algebra, by emphasizing both the algebraic and geometric properties. More specifically we prove a series of "negative" results that explain why this approximation procedure is not competitive with the optimal Frobenius approximation, although it could be used for regularization purposes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have