Abstract

The Hilbert ideal is the ideal generated by positive degree invariant polynomials of a finite group. For a cyclic group of prime order p, we show that the image of the transfer lie in the ideal generated by invariants of degree at most p − 1 . Consequently we show that the Hilbert ideal corresponding to an indecomposable representation is generated by polynomials of degree at most p, confirming a conjecture of Harm Derksen and Gregor Kemper for this case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.