Abstract
By incorporating two gauge connections, transgression forms provide a generalization of Chern-Simons actions that are genuinely gauge-invariant on bounded manifolds. In this work, we show that, when defined on a manifold with a boundary, the Hamiltonian formulation of a transgression field theory can be consistently carried out without the need to implement regularizing boundary terms at the level of first-class constraints. By considering boundary variations of the relevant functionals in the Poisson brackets, the surface integral in the very definition of a transgression action can be translated into boundary contributions in the generators of gauge transformations and diffeomorphisms. This prescription systematically leads to the corresponding surface charges of the theory, reducing to the general expression for conserved charges in (higher-dimensional) Chern-Simons theories when one of the gauge connections in the transgression form is set to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.