Abstract

1. It is well known that solutions of the Cauchy problem for the wave equation represent disturbances obeying the laws of geometrical optics. Specifically a solution ψ of the wave equationfor which ψ = δψ/δt = 0 initially outside a surface C0, vanishes at time t in the exterior of a surface Ct parallel to and at a normal distance ct from C0 (see e.g. (l), page 643). Analogous results hold for the solutions of any linear hyperbolic second-order partial differential equation with boundary-value conditions of the Cauchy type. Boundary conditions of the type representing reflexion have been treated by Friedlander(2). He showed that as well as the incident and reflected wavefronts, there sometimes exists a ‘shadow’ where diffraction occurs, and that the diffracted wave fronts are normal to the reflecting surface, the corresponding rays travelling along the surface and leaving it tangentially. The purpose of this paper is to extend these results to refraction, where instead of a purely reflecting surface we have an interface between two different homogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.