Abstract
AbstractWe present a method for solving a class of optimal control problems involving hyperbolic partial differential equations. A numerical integration method for the solution of a general linear second-order hyperbolic partial differential equation representing the type of dynamics under consideration is given. The method, based on the piecewise bilinear finite element approximation on a rectangular mesh, is explicit. The optimal control problem is thus discretized and reduced to an ordinary optimization problem. Fast automatic differentiation is applied to calculate the exact gradient of the discretized problem so that existing optimization algorithms may be applied. Various types of constraints may be imposed on the problem. A practical application arising from the process of gas absorption is solved using the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.