Abstract

We discuss the Miura map as well as the Poisson algebras associated with the dispersionless Dym hierarchy. Particularly, we study explicitly the bi-Hamiltonian structure of a truncated Dym system with two variables, in which a new hierarchy flow generated by logarithmic Hamiltonians appears. We then show that this new hierarchy emerges naturally from the topological recursion relation in the Landau–Ginzburg formulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.