Abstract

For an ample Hausdorff groupoid G \mathcal {G} , and the Steinberg algebra A R ( G ) A_R(\mathcal {G}) with coefficients in the commutative ring R R with unit, the centralizer is described for the subalgebra A R ( U ) A_R(U) with U U an open closed invariant subset of the unit space of G \mathcal {G} . In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.