Abstract
For an ample Hausdorff groupoid G \mathcal {G} , and the Steinberg algebra A R ( G ) A_R(\mathcal {G}) with coefficients in the commutative ring R R with unit, the centralizer is described for the subalgebra A R ( U ) A_R(U) with U U an open closed invariant subset of the unit space of G \mathcal {G} . In particular, it is shown that the algebra of the interior of the isotropy is indeed the centralizer of the diagonal subalgebra of the Steinberg algebra. This will unify several results in the literature, and the corresponding results for Leavitt path algebras follow.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have