Abstract

Cutting stock problems and bin packing problems are basically the same problems. They differ essentially on the variability of the input items. In the first, we have a set of items, each item with a given multiplicity; in the second, we have simply a list of items (each of which we may assume to have multiplicity 1). Many approximation algorithms have been designed for packing problems; a natural question is whether some of these algorithms can be extended to cutting stock problems. We define the notion of “well-behaved” algorithms and show that well-behaved approximation algorithms for one, two and higher dimensional bin packing problems can be translated to approximation algorithms for cutting stock problems with the same approximation ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.