Abstract
We study two non-local variational problems that are characterized by the presence of a Riesz-like repulsive term that competes with an attractive term. The first functional is defined on the subsets of the Euclidean space and has the fractional perimeter as an attractive term. The second functional instead is defined on non-negative integrable and uniformly bounded densities and contains an attractive term of positive-power type. For both of the functionals, we prove that balls are the unique minimizers in the appropriate volume constraint range, generalizing the results already present in the literature for more specific energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.