Abstract

We present a new approach to study the symmetry of minimizers for a large class of nonlocal variational problems. This approach which generalizes the Reflection method is based on the existence of some integral identities. We study the identities that lead to symmetry results, the functionals that can be considered and the function spaces that can be used. Then we use our method to prove the symmetry of minimizers for a class of variational problems involving the fractional powers of Laplacian, for the generalized Choquard functional and for the standing waves of the Davey–Stewartson equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.