Abstract
An interior point of a finite point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer k ≥ 1, let g(k) be the smallest integer such that every set of points in the plane, no three collinear, containing at least g(k) interior points has a subset of points containing exactly k interior points. Similarly, for any integer k ≥ 3, let h(k) be the smallest integer such that every set of points in the plane, no three collinear, containing at least h(k) interior points has a subset of points containing exactly k or k+1 interior points. In this note, we show that g(k) ≥ 3k-1 for k ≥ 3. We also show that h(k) ≥ 2k+1 for 5 ≤ k ≤ 8, and h(k) ≥ 3k-7 for k ≥ 8.KeywordsLower BoundConvex HullConvex SubsetInterior PointSmall IntegerThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.