Abstract
In this article we examine to necessary and sufficient optimality conditions for interval optimization problems. We introduce a new concept of stationary point for an interval-valued function based on the gH-derivative. We show the importance the this concept from a practical and computational point of view. We introduce a new concept of invexity for gH-differentiable interval-valued function which generalizes previous concepts and we prove that it is a sufficient optimality condition. Finally, we show that the concepts of differentiability, convexity and invexity for interval-valued functions based on the differentiability, convexity and invexity of its endpoint functions are not adequate tools for interval optimization problems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have