Abstract
Transfer theorems are central results in abstract algebraic logic that allow to generalize properties of the lattice of theories of a logic to any algebraic model and its lattice of filters. Their proofs sometimes require the existence of a natural extension of the logic to a bigger set of variables. Constructions of such extensions have been proposed in particular settings in the literature. In this paper we show that these constructions need not always work and propose a wider setting (including all finitary logics and those with countable language) in which they can still be used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.