Abstract
In this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively (finitely) subdirectly irreducible models. We identify two syntactical notions formulated in terms of (completely) intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain a new hierarchy of logics going beyond the scope of finitarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.