Abstract

We discuss Morse inequalities for homotopic critical maps of the energy functional with a potential term. For a generic potential this gives a lower bound on the number of homotopic critical maps in terms of the Betti numbers of the moduli space of harmonic maps. Other applications include sharp existence results for maps with prescribed tension field and pseudo-harmonic maps. Our hypotheses are that the domain and target manifolds are closed and the latter has non-positive sectional curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.