Abstract
In this paper, we use heat flow method to prove the existence of pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature, which is a generalization of Eells–Sampson’s existence theorem. Furthermore, when the target manifold has negative sectional curvature, we analyze horizontal energy of geometric homotopy of two pseudo-harmonic maps and obtain that if the image of a pseudo-harmonic map is neither a point nor a closed geodesic, then it is the unique pseudo-harmonic map in the given homotopic class. This is a generalization of Hartman’s theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.