Abstract

Hydromagmatic eruptions convert thermal into mechanical energy via the expansion of ground- and/or surface-water. Several models address the energetics of these eruptions based on different physical-volcanological approaches. Here we test different models with two case studies in the Colli Albani Volcanic District (central Italy): the monogenetic Prata Porci and the polygenetic Albano maars. Test results are mutually consistent, and show cumulative mechanical energy releases on the order of 1015–1017 J for single maars. The fraction of thermal energy turned into mechanical ranges from 0.45 (as calculated from the theoretical maximum mechanical energy), through 0.1 (calculated from country rock fragmentation, crater formation and ballistic ejection), to 0.03 (derived from magma fragmentation by thermohydraulic explosions). It appears that the energy released during the most intense hydromagmatic events may account for a dominant fraction of the total mechanical energy released during the whole maar eruptive histories. Finally, we consider the role of magmatic explosive activity intervening during maar eruptions in causing departures from predictions of the models evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.