Abstract
In Dzanic (2024) [12], a limiting approach for high-order discontinuous Galerkin schemes was introduced which allowed for imposing constraints on the solution continuously (i.e., everywhere within the element). While exact for linear constraint functionals, this approach only imposed a sufficient (but not the minimum necessary) amount of limiting for nonlinear constraint functionals. This short note shows how this limiting approach can be extended to allow exactness for general nonlinear quasiconcave constraint functionals through a nonlinear limiting procedure, reducing unnecessary numerical dissipation. Some examples are shown for nonlinear pressure and entropy constraints in the compressible gas dynamics equations, where both analytic and iterative approaches are used.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have