Abstract

A density-dependent local composition expression for the residual energy is derived from a generalized NRTL expression for the excess energy and the van der Waals fluid theory. Integration of this expression yields a volume-dependent expression for the Helmholtz energy from which equations of state utilizing the local composition concept are derived and which in the high-density limit contain the well-known activity coefficient models. The local composition versions of the Carnahan—Starling—van der Waals, the Redlich—Kwong—Soave and the Peng—Robinson equations of state are derived. It is further shown that the group contribution versions of the NRTL, the Wilson and the UNIQUAC excess models may be derived from the generalized NRTL expression for the residual energy when applied to groups instead of molecules. It is thus demonstrated that all current local composition activity-coefficient models can be derived from a local composition version of the van der Waals equation of state using different sets of assumptions. In the same way the van Laar, the Scatchard—Hildebrand and the Flory—Huggins activity coefficient models are obtained from the van der Waals equation of state using the original mixing rules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.