Abstract

Viscosity, the measure of a fluid's resistance to deformation, is a critical parameter in many industries. Being able to accurately predict viscosity is essential for the successful design and optimization of technological processes. In this research, regression models were created to predict the viscosity of deep eutectic solvents (DESs). Machine learning models were trained using a data set of 3440 data points for two component DESs. Different algorithms, such as Multiple Linear Regression, Random Forest, CatBoost, and Transformer CNF, were employed alongside a variety of structural representations like fingerprints, σ-profiles, and molecular descriptors. The effectiveness of the models was assessed for interpolation tasks within the training data and extrapolation outside of it. The results indicate that a rigorous splitting of the dataset into subsets is necessary to accurately evaluate the performance of the models. Two new choline chloride-based DESs were prepared and their viscosities were measured to evaluate the predictive capabilities of the models. The CatBoost algorithm with CDK molecular descriptors was chosen as the recommended model. The average absolute relative deviations (AARD) of this model exhibited fluctuations during 5-fold cross-validation, ranging from 10.8 % when interpolating within the dataset to 88 % when extrapolating to new mixture components. The open access model was presented in this study (http://chem-predictor.isc-ras.ru/ionic/des/).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.