Abstract

An important test of the quality of numerical methods developed to track the interface between two fluids is their ability to reproduce test cases or benchmarks. However, benchmark solutions are scarce and virtually nonexistent for complex geometries. We propose a simple method to generate benchmark solutions in the context of the two-layer flow problem, a classical multiphase flow problem. The solutions are obtained by considering the inverse problem of finding the required channel geometry to obtain a prescribed interface profile. This viewpoint shift transforms the problem from that of having to solve a complex differential equation to the much easier one of finding the roots of a quartic polynomial. doi:10.1017/S144618111000091X

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.