Abstract
Denote by P(G) the torsional rigidity of a simply connected plane domain G, and by I2(G) the Euclidean moment of inertia of G. In 1995 F.G. Avkhadiev proved that P(G) and I2(G) are comparable quantities in sense of Polya and Szego. Moreover, it was shown that the ratio P(G) /I2(G) belongs to the segment [1, 64]. We investigate the following conjecture P(G) ≥ 3I2(G), where G is a simply connected domain. We prove that the conjecture is true for polygonal domains circumscribed about a circle. For convex domains we show sharp isoperimetric inequalities, which justify the conjecture, in particular, we prove that P(G) > 2I2(G). Some aspects of approximate formulas for P(G) are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.