Abstract
We study criteria for the finiteness of the constants in integral inequalities generalizing the Poincaré–Friedrichs inequality and Saint-Venant’s variational definition of torsional rigidity. The Rayleigh–Faber–Krahn isoperimetric inequality and the Saint-Venant–Pólya inequality guarantee the existence of finite constants for domains of finite volume. Criteria for the existence of finite constants for unbounded domains of infinite volume were known only in the cases of planar simply connected and spatial convex domains. We generalize and strengthen some known results and extend them to the case when . Here is one of our results. Suppose that and , where is a compact set and is either a planar domain with uniformly perfect boundary or a spatial domain satisfying the exterior sphere condition. Under these assumptions, a finite constant exists if and only if the integral is finite, where is the distance from the point to the boundary of .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.