Abstract

We demonstrate a nonvolatile cryogenic magnetic memory element needed to support emerging superconducting- and quantum-computing technologies. The central element is a switchable tri-layer thin film magnetic dot comprising two semiconducting ferromagnetic GdxSm1−xN layers separated by an exchange-blocking Al layer. The materials are explored for their tunable magnetic responses, the potential to engineer compensating magnetic moments in the anti-parallel tri-layers. The stability of the parallel and anti-parallel states and the reproducibility over repeated cycles are also demonstrated. We show that the tri-layer stacks can be formed into dots as small as 4 μm diameter, without affecting their magnetic behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call