Abstract

AbstractThis paper presents the design, analysis, simulation, and implementation of the architecture of a new nonuniform‐type digital phase‐locked loop (DPLL). The proposed loop uses a composite phase detector (CPD), which consists of a sample‐and‐hold unit and an arctan block. The CPD improves the system linearity and results in a wider lock range. In addition, the loop has an adaptive controller block, which can be used to minimize the overall system sensitivity to variations in the power of the input signal. Furthermore, the controller has a tuning mechanism that gives the designer the flexibility to customize the loop parameters to suit a particular application. These performance parameters include lock range, acquisition time, phase noise or jitter, and signal‐to‐noise ratio enhancement. The simulation results show that the proposed loop provides flexibility to optimize the major conflicting system parameters. A prototype of the proposed system was implemented using a field‐programmable gate array (FPGA), and the practical results concur with those obtained by simulation using MATLAB/Simulink. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.