Abstract

AbstractDespite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13–14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes' apogee, which suggest a very interesting scenario: wave‐particle interactions causing a PSD peak at ~ L* = 5.5 from where the electrons are then rapidly transported radially inward. This letter demonstrates, for the first time in detail, that geomagnetic storms are not necessary for causing dramatic enhancements in the outer radiation belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.