Abstract

ABSTRACT The catalytic cracking of methylcyclohexane over an industrial FCC catalyst (containing Y-zeolite) has been studied in the Temporal Analysis of Products (TAP) reactor. High selectivities towards toluene were observed (S tol ≈ 70 %). The unusual product distribution originates from a predominant protolytic cracking that is favored by the low pressures and high concentration of acid sites applied in the TAP reactor. The formation of the other cracking products (benzene and smaller paraffins and olefins) is well accounted for by the relative stability of the secondary and tertiary carbenium ions. The catalytic cracking of methylcyclohexane can be adequately modeled by a reaction scheme by which the secondary and tertiary carbenium ions are formed in parallel. The activation energies for the formation of toluene and benzene are 144 kJ mol - 1 and 220 kJ mol - 1 respectively. This is in line with thermodynamic considerations concerning the stability of carbenium ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.