7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.2528/pierm15110903
Copy DOIPublication Date: Jan 1, 2016 | |
Citations: 11 |
The generalized Fibonacci multiferroic superlattices (GFMS) are composed of single-phase multiferroic domains with simultaneous polarization and magnetization and are defined by the binary substitutional rule (B −→ BmA, A −→ B, m = 2, 3). We propose to construct a nonreciprocal multichannel bandstop filter by the GFMS. The couplings between electromagnetic waves and lattice vibration of multiferroic material with ferroelectric and ferromagnetic (or antiferromagnetic) orders can be invoked either through piezoelectric or piezomagnetic effects and can lead to the creation of polaritonic band structure. The plane wave expansion method with first-order approximation predicts the existence of multiple band gaps, and electromagnetic waves lying within the band gaps are prohibited, and the band gaps with respect to forward electromagnetic waves (FEWs) and backward electromagnetic waves (BEWs) are asymmetric. The forbidden band structures with FEWs and BEWs are calculated by the transfer matrix method and multiple frequency channels with unidirectional transmission of electromagnetic waves can be further confirmed. Nine and twenty transmission dips in transmission spectra for the BEWs in the frequency range of ω = 0.4–0.6 (17.06 GHz–25.59 GHz) are found in the GFMS with m = 2 and 3, respectively, in which the BEWs are prohibited while the FEWs can travel. Thus, the GFMS has all the conditions for the nonreciprocal multi-channel bandstop filter. Besides, the GFMS can also be applied to construct compact multi-channel one-way electromagnetic waveguides.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.