Abstract

As an important tool for knowledge representation and decision-making under uncertainty, Dempster-Shafer evidence theory (D-S theory) has been used in many fields. The application of D-S theory is critically dependent on the availability of the basic probability assignment (BPA). The determination of BPA is still an open issue. A non-parametric method to obtain BPA is proposed in this paper. This method can handle multi-attribute datasets in classification problems. Each attribute value of the dataset sample is treated as a stochastic quantity. Its non-parametric probability density function (PDF) is calculated using the training data, which can be regarded as the probability model for the corresponding attribute. The BPA function is then constructed based on the relationship between the test sample and the probability models. The missing attribute values in datasets are treated as ignorance in the framework of the evidence theory. This method does not have the assumption of any particular distribution. As a result, it can be flexibly used in many engineering applications. The obtained BPA can avoid high conflict between evidence, which is desired in data fusion. Several benchmark classification problems are used to demonstrate the proposed method and to compare against existing methods. The constructed classifier based on the proposed method compares well to the state-of-the-art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.