Abstract

The Dempster–Shafer evidence theory (D–S theory) is one of the primary tools for knowledge representation and uncertain reasoning, and has been widely used in many information fusion systems. However, how to determine the basic probability assignment (BPA), which is the main and first step in D–S theory, is still an open issue. In this paper, based on the normal distribution, a method to obtain BPA is proposed. The training data are used to build a normal distribution-based model for each attribute of the data. Then, a nested structure BPA function can be constructed, using the relationship between the test data and the normal distribution model. A normality test and normality transformation are integrated into the proposed method to handle non-normal data. The missing attribute values in datasets are addressed as ignorance in the framework of the evidence theory. Several benchmark pattern classification problems are used to demonstrate the proposed method and to compare against existing methods. Experiments provide encouraging results in terms of classification accuracy, and the proposed method is seen to perform well without a large amount of training data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.