Abstract

A new nonmonotone line search algorithm is proposed and analyzed. In our scheme, we require that an average of the successive function values decreases, while the traditional nonmonotone approach of Grippo, Lampariello, and Lucidi [SIAM J. Numer. Anal., 23 (1986), pp. 707--716] requires that a maximum of recent function values decreases. We prove global convergence for nonconvex, smooth functions, and R-linear convergence for strongly convex functions. For the L-BFGS method and the unconstrained optimization problems in the CUTE library, the new nonmonotone line search algorithm used fewer function and gradient evaluations, on average, than either the monotone or the traditional nonmonotone scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.