Abstract

This paper presents an experimental study on the tribological behaviour and cracking response of a Ti–10V–2Fe–3Al titanium alloy under fretting loading with a cylinder on plane configuration. Three types of surfaces were investigated: a polished one considered as the reference, a ground one and a shot peened surface. Surfaces were compared with respect to residual stress, hardness and roughness. The first step of this study was to determine sliding conditions and coefficient of friction of the three contact types. Next, fretting tests under stabilized partial slip regime were carried out to investigate crack nucleation and propagation. Results show that whatever surface roughness or residual stress in the material, tribological behaviour is the same. These latter confirm that sliding condition and coefficient of friction in partial slip regime is due to material effect and not to roughness or surface hardness. Then, residual stress induced by grinding or shot peening have no influence on the crack nucleation threshold under fretting solicitation because crack nucleation is only induced by a sufficient tangential loading. The crack nucleation threshold is formalized by applying the Crossland criterion taking into account the stress gradient and the ensuing “size effect”. As expected, cracks propagation is influenced by residual stress under the surface. Compared to the reference case, for a same loading parameters set, residual stress induced by grinding is not sufficient to decrease the crack length reached whereas effects of shot peening decrease highly these latter. So, there is a threshold of residual stress from which residual stresses are useful against cracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call