Abstract

A nonlocal shear deformation beam theory is proposed for bending, buckling, and vibration of nanobeams using the nonlocal differential constitutive relations of Eringen. The theory, which does not require shear correction factor, accounts for both small scale effects and quadratic variation of shear strains and consequently shear stresses through the thickness of the beam. In addition, it has strong similarities with nonlocal Euler–Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The equations of motion are derived from Hamilton’s principle. Analytical solutions of deflection, buckling load, and natural frequency are presented for a simply supported beam, and the obtained results compare well with those predicted by the nonlocal Timoshenko and Reddy beam theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.