Abstract

The paper deals with the problem of the determination of the in-plane behavior of periodic masonry material. The masonry is considered as a composite material obtained as a regular distribution of blocks connected by horizontal and vertical mortar joints. The macromechanical equivalent Cosserat medium is derived by a rational homogenization procedure based on the Transformation Field Analysis. The micromechanical analysis is developed considering a Cauchy model for the masonry components. In particular, linear elastic constitutive relationship is considered for the blocks, while nonlinear constitutive law is adopted for the mortar joints, accounting for the damage and friction phenomena occurring during the loading history. Numerical applications are performed in order to assess the performances of the proposed procedure in reproducing the mechanical behavior of the masonry material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.