Abstract
Abstract The present paper deals with the problem of the determination of the in-plane behavior of masonry material. The masonry is considered as a composite material composed by a regular distribution of blocks connected by horizontal and vertical mortar joints. The overall constitutive relationships of the regular masonry are derived by a rational micromechanical and homogenization procedure. Linear elastic constitutive relationship is considered for the blocks, while a new special nonlinear constitutive law is proposed for the mortar joints. In particular, a mortar constitutive law, which accounts for the coupling of the damage and friction phenomena occurring during the loading history, is proposed; the developed model is based on an original micromechanical analysis of the damage process of the mortar joint. Then, an effective nonlinear homogenization procedure, representing the main novelty of the paper, is proposed; it is based on the transformation field analysis, using the technique of the superposition of the effects and the finite element method. The presented methodology is implemented in a numerical code. Finally, numerical applications are performed in order to assess the performances of the proposed procedure in reproducing the mechanical behavior of masonry material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.