Abstract
The paper proposes a nonlinear optimal control approach for the model of the vertical take-off and landing (VTOL) aircraft. This aerial drone receives as control input a directed thrust, as well as forces acting on its wing tips. The latter forces are not perpendicular to the body axis of the drone but are tilted by a small angle. The dynamic model of the VTOL undergoes approximate linearization with the use of Taylor series expansion around a temporary operating point which is recomputed at each iteration of the control method. For the approximately linearized model, an H-infinity feedback controller is designed. The linearization procedure relies on the computation of the Jacobian matrices of the state-space model of the VTOL aircraft. The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the aerial drone, under model uncertainties and external perturbations. For the computation of the controller’s feedback gains, an algebraic Riccati equation is solved at each time-step of the control method. The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the VTOL aircraft, under moderate variations of the control inputs. The stability properties of the control scheme are proven through Lyapunov analysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have