Abstract

In this paper we propose a novel approach for characterizing effective connectivity in functional magnetic resonance imaging (fMRI) data. Unlike most other methods, our approach is nonlinear and does not rely on a priori specification of a model that contains structural information of neuronal populations. Instead, it relies on a nonlinear autoregressive exogenous model and nonlinear system identification theory; the model's nonlinear connectivities are determined using a least squares method. A statistical test was developed to quantify the significance of the influence that regions exert on one another. We compared this approach with a linear method and applied it to the human visual cortex network. Results show that this method can be used to model nonlinear interaction between different regions for fMRI data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.