Abstract
We consider a nonlinear boundary value problem with unilateral constraints in a two-dimensional rectangle. We derive a variational formulation of the problem which is in the form of a history-dependent variational inequality. Then, we establish the existence of a unique weak solution to the problem. We also prove two convergence results. The first one provides the continuous dependence of the solution with respect to the unilateral constraint. The second one shows the convergence of the solution of the penalized problem to the solution of the original problem, as the penalization parameter converges to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.