Abstract

A quadrilateral continuum-based C 0 shell element is presented, which relies on extensible director kinematics and incorporates unmodified three-dimensional constitutive models. The shell element is developed from the nonlinear enhanced assumed strain (EAS) method advocated by Simo & Armero [1] and formulated in curvilinear coordinates. Here, the EAS-expansion of the material displacement gradient leads to the local interpretation of enhanced covariant base vectors that are superposed on the compatible covariant base vectors. Two expansions of the enhanced covariant base vectors are given: first an extension of the underlying single extensible shell kinematic and second an improvement of the membrane part of the bilinear element. Furthermore, two assumed strain modifications of the compatible covariant strains are introduced such that the element performs well even in the case of very thin shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.