Abstract

The paper is concerned with a geometrically non-linear solid shell finite element formulation, which is based on the Hu-Washizu variational principle. For the approximation of the independent displacement, stress and strain fields, the strain field is additively decomposed into two parts. Due to the fact that one part of the strain field is interpolated in the same manner as proposed by the enhanced assumed strain (EAS) method, it is denoted as EAS field. The other strain field is approximated with the same interpolation functions as the stress field. In contrast to the EAS concept the approximation spaces of the stresses and the enhanced assumed strains are not orthogonal. Consequently the stress field is not eliminated from the finite element equations. For the displacements tri-linear shape functions are considered. Shear locking and curvature thickness locking are treated using assumed natural strain interpolations. A static condensation leads to a simple low order hexahedral solid shell element. Numerical tests show that the present model is very robust and allows larger load steps than an EAS solid shell element.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.