Abstract

We investigate the Cauchy problem for a nonlinear evolution equation, formulated in an abstract Lebesgue space, as a generalization of various Boltzmann kinetic models. Our main result provides sufficient conditions for the existence, uniqueness, and positivity of global in time solutions. The analysis extends nontrivially monotonicity methods, originally developed in the context of the existence theory for the classical Boltzmann equation in L1. Our application examples are Smoluchowski's coagulation equation, a Povzner-like equation with dissipative collisions, and a Boltzmann model with chemical reactions, for which we obtain a unitary existence theory, with improved results, compared to the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.