Abstract
The aim of the present paper is to construct a stochastic process, whose law is the solution of the Smoluchowski's coagulation equation. We introduce first a modified equation, dealing with the evolution of the distribu-tion Q t (dx) of the mass in the system. The advantage we take on this is that we can perform an unified study for both continuous and discrete models. The integro-partial-differential equation satisfied by {Q t } t ≥0 can be interpreted as the evolution equation of the time marginals of a Markov pure jump process. At this end we introduce a nonlinear Poisson driven stochastic differential equation related to the Smoluchowski equation in the following way: if X t satisfies this stochastic equation, then the law of X t satisfies the modified Smoluchowski equation. The nonlinear process is richer than the Smoluchowski equation, since it provides historical information on the particles. Existence, uniqueness and pathwise behavior for the solution of this SDE are studied. Finally, we prove that the nonlinear process X can be obtained as the limit of a Marcus–Lushnikov procedure. 1. Introduction. The coagulation model governs various phenomena as for example: polymerization, aggregation of colloidal particles, formation of stars and planets, behavior of fuel mixtures in engines, etc. Smoluchowski's coagulation equation models the dynamic of such phenomena and describes the evolution of a system of clusters which coalesce in order to form bigger clusters. Each cluster is identified by its size. The only mechanism taken into account is the coalescence of two clusters, other effects as multiple coagulation are neglected. We assume also that the rate of these reactions depends on the sizes of clusters involved in the coagulation. Denoting by n(k, t) the (nonnegative) concentration of clusters of size k at time t, the discrete
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.