Abstract
This paper is concerned with the controlled motion of a three-link wheeled snake robot propelled by changing the angles between the central and lateral links. The limits on the applicability of the nonholonomic model for the problem of interest are revealed. It is shown that the system under consideration is completely controllable according to the Rashevsky – Chow theorem. Possible types of motion of the system under periodic snake-like controls are presented using Fourier expansions. The relation of the form of the trajectory in the space of controls to the type of motion involved is found. It is shown that, if the trajectory in the space of controls is centrally symmetric, the robot moves with nonzero constant average velocity in some direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.