Abstract

Natsume-Olsen noncommutative spheres are C*-algebras which generalize C(S^k) when k is odd. These algebras admit natural actions by finite cyclic groups, and if one of these actions is fixed, any equivariant homomorphism between two Natsume-Olsen spheres of the same dimension induces a nontrivial map on odd K-theory. This result is an extended, noncommutative Borsuk-Ulam theorem in odd dimension, and just as in the topological case, this theorem has many (almost) equivalent formulations in terms of theta-deformed spheres of arbitrary dimension. In addition, we present theorems on graded Banach algebras, motivated by algebraic Borsuk-Ulam results of A. Taghavi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.