Abstract
Abstract We recall that the two-sided crossed product of finite cyclic groups is actually a generalization of the crossed product construction of the same type of groups (cf. [10]). In this paper, by considering the crossed and two-sided crossed products obtained from both finite and infinite cyclic groups, we first present the complete rewriting systems and normal forms of elements over crossed products. (We should note that the complete rewriting systems and normal forms of elements over two-sided crossed products have been recently defined in [10]). In the crossed product case, we will consider their presentations that were given in [2]. As a next step, by using the normal forms of elements of these two products, we calculate the growth series of the crossed product of different combinations of finite and infinite cyclic groups as well as the growth series of two-sided crossed product of finite cyclic groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.