Abstract

In this paper, we study the thermodynamical and mathematical consistencies for a non-singular early-time viscous cosmological model known as soft-Big Bang, which was previously found in [N. Cruz, E. González and J. Jovel, Phys. Rev. D 105, 024047 (2022)]. This model represents a flat homogeneous and isotropic universe filled with a dissipative radiation fluid and a cosmological constant [Formula: see text], which is small but not negligible, in the framework of Eckart’s theory. In particular, we discuss the capability of the solution in the fulfillment of the three following conditions: (i) the near equilibrium condition, which is assumed in Eckart’s theory of non-perfect fluids, (ii) the mathematical stability of the solution under small perturbations, and (iii) the positiveness of the entropy production. We have found that this viscous model can describe the radiation domination era of the [Formula: see text]CDM model and, at the same time, fulfill the three conditions mentioned by the fulfillment of a single constraint on the bulk viscous coefficient [Formula: see text], finding also that this non-singular model has a positive energy density in the infinity past which is infinity hotter with a constant entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.